\square 10EC54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021
 Microwave and Radar

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

1 a. Derive an expression for the line impedance of a transmission line, at the sending end, in terms of load impedance $\left(Z_{l}\right)$ and characteristic impedance $\left(Z_{o}\right)$.
(08 Marks)
b. Define and derive expressions for reflection co-efficient and transmission co-efficient for a transmission line.
(08 Marks)
c. A transmission line has following parameters:
$\mathrm{R}=2 \Omega / \mathrm{m} \quad \mathrm{G}=0.5 \mathrm{~m} \mathrm{mho} / \mathrm{m} \quad \mathrm{f}=1 \mathrm{GHz} \quad \mathrm{L}=8 \mathrm{nH} / \mathrm{m} \quad \mathrm{C}=0.23 \mathrm{pF}$
Find: i) Characteristic impedance ii) Propagation constant.
(04 Marks)
(10 Marks)
b. Define coupling factor, directivity of a directional coupler. Explain two hole directional coupler.
(10 Marks)
3 a. Explain the fundamental concept of Ridley Watkins-Hilsum (RWH) theory. Derive an expression for the condition for negative resistance in the Gunn diode, with the help of two-valley model.
(10 Marks)
b. Draw equivalent circuit of the parametric amplifier. Explain briefly parametric up converter.
(06 Marks)
c. An n-type GaAs Gunn diode has following parameter:
i) Electron density $\mathrm{n}=10^{18} \mathrm{~cm}^{-3}$
ii) Electron density at lower valley: $\mathrm{n}_{l}=10^{10} \mathrm{~cm}^{-3}$
iii) Electron density at upper valley $\mathrm{n}_{y}=10^{8} \mathrm{~cm}^{-3}$
iv) Temperature $\mathrm{T}=300^{\circ} \mathrm{K}$

Determine the conductivity of the diode.
(04 Marks)
4 a. State and derive properties of S-parameters.
(10 Marks)
b. Define the following losses in microwave network in terms of S-parameters:
i) Insertion loss
ii) Transmission loss
iii) Reflection loss
iv) Return loss.
(06 Marks)
c. Write S-matrix for
i) Directional coupler
ii) Four port circulator.
(04 Marks)

PART - B

5 a. Write short note on coaxial connectors and adapters.
(05 Marks)
b. Explain construction and working of a precision rotary type phase shifter, with neat diagram.
(10 Marks)
c. Explain magic tee with neat diagram.
(05 Marks)

10EC54
6 a. With necessary equations, explain various losses in microstrip lines.
(06 Marks)
b. With a neat sketch, explain the different types of strip lines.
c. Compare strip-line and microstrip line.

7 a. Explain RADAR with neat block diagram.
b. State and explain applications of RADAR.
c. Derive an expression for the basic form of RADAR-RANGE equation,

8 a. Explain the principle and working of MTI RADAR with the help of a neat block diagram.
(06 Marks)
b. Explain single delay line canceller with neat block diagram. Derive an expression for the frequency response of a delay line canceller.
(08 Marks)
c. For an MTI RADAR, what are the first three blind speed at 2 GHz when PRF is at 1 kHz .
(06 Marks)

