

S

10EC54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Microwave and Radar

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

<u>PART – A</u>

1	a.	Derive an expression for the line impedance of a transmission line, at the sending terms of load impedance (7) and characteristic impedance (7)	end, in
	b.	Define and derive expressions for reflection co-efficient and transmission co-efficient transmission line. (08)	nt for a Marks)
	c.	A transmission line has following parameters:	,
		$R = 2\Omega/m$ $G = 0.5m \text{ mho/m}$ $f = 1 \text{ GHz}$ $L = 8n\text{H/m}$ $C = 0.23 \text{ pF}$	
		Find: i) Characteristic impedanceii) Propagation constant.(04)	Marks)
2	a.	Derive electric and magnetic field equations in rectangular waveguides for TM_{mn} mod	de. Marks)
	b.	Define coupling factor, directivity of a directional coupler. Explain two hole directional	ectional
		coupler. (10	Marks)
•			
3	a.	Explain the fundamental concept of Ridley Watkins-Hilsum (RWH) theory. De	rive an
		two-valley model (10	Morks)
	h	Draw equivalent circuit of the parametric amplifier Explain briefly parametric up cor	verter
	0.	(06) (06)	Marks)
	c.	An n-type GaAs Gunn diode has following parameter:	,
		i) Electron density $n = 10^{18} \text{ cm}^{-3}$	
		ii) Electron density at lower valley : $n_l = 10^{10} \text{ cm}^{-3}$	
		111) Electron density at upper valley $n_u = 10^{\circ} \text{cm}^{-3}$	
		1 iv) Temperature T = 300°K	
		Determine the conductivity of the diode. (04	Marks)
4	a.	State and derive properties of S-parameters. (10	Marks)
	b.	Define the following losses in microwave network in terms of S-parameters:	
		i) Insertion loss	
		iii) Reflection loss	
		iv) Return loss (06	Marks)
	c.	Write S-matrix for	, i i i i i i i i i i i i i i i i i i i
		i) Directional coupler	
		ii) Four port circulator. (04	Marks)
_		$\mathbf{\underline{PART}} = \mathbf{\underline{B}}$	
5	a. 1.	Write short note on coaxial connectors and adapters. (05	Marks)
	U.	Explain construction and working of a precision rotary type phase shifter, with heat d	iagram. Marke)
	c.	Explain magic tee with neat diagram. (05	Marks)

1 of 2

10EC54

6	a.	With necessary equations, explain various losses in microstrip lines.	(06 Marks)
	b.	With a neat sketch, explain the different types of strip lines.	(10 Marks)
	c.	Compare strip-line and microstrip line.	(04 Marks)
7	a.	Explain RADAR with neat block diagram.	(06 Marks)
	b.	State and explain applications of RADAR.	(06 Marks)
	c.	Derive an expression for the basic form of RADAR-RANGE equation.	(08 Marks)
8	a.	Explain the principle and working of MTI RADAR with the help of a neat blo	ck diagram.
			(06 Marks)

- b. Explain single delay line canceller with neat block diagram. Derive an expression for the frequency response of a delay line canceller. (08 Marks)
- c. For an MTI RADAR, what are the first three blind speed at 2GHz when PRF is at 1kHz.

Si

(06 Marks)

Ś

S

Ś